Precision Tubing for Hydraulics and Fuel Injection Engines

Size Range and Tolarance for Hydraulic and Fuel Injection Tubing

O.D	O.D LIMIT	I.D	I.D LIMIT	W.T	WEIGHT
0.0	DEVIATION	1.0	DEVIATION	VV. 1	WLIGHT
MM	MM	MM	MM	MM	KG/MTR
4	<u>+</u> 0.08	2.5	<u>+</u> 0.15	0.75	0.060
-	±0.08	2	<u>+</u> 0.15	1	0.073
5	<u>+</u> 0.08	3.5	<u>+</u> 0.15	0.75	0.078
5.5	±0.08	1.50	<u>+</u> 0.15	2.00	0.173
6	<u>+</u> 0.08	4	<u>+</u> 0.15	1	0.123
-	±0.08	3	<u>+</u> 0.15	1.5	0.166
-	<u>+</u> 0.08	2.4	<u>+</u> 0.15	1.8	0.186
-	±0.08	2.5	<u>+</u> 0.15	1.75	0.183
-	<u>+</u> 0.08	2	<u>+</u> 0.15	2	0.197
6.35	±0.08	1.70	<u>+</u> 0.15	2.33	0.231
-	<u>+</u> 0.08	1.83	<u>+</u> 0.15	2.26	0.228
-	<u>+</u> 0.08	2.36	<u>+</u> 0.15	2.00	0.214
7	<u>+</u> 0.08	2.00	<u>+</u> 0.15	2.50	0.227
8	<u>+</u> 0.08	6	<u>+</u> 0.15	1	0.172
-	±0.08	5	<u>+</u> 0.15	1.5	0.240
-	<u>+</u> 0.08	4	<u>+</u> 0.15	2	0.295
-	±0.08	2.5	<u>+</u> 0.25	2.75	0.346
-	<u>+</u> 0.08	3	<u>+</u> 0.25	2.5	0.339
9.52	±0.08	7.52	<u>+</u> 0.15	1	0.210
-	<u>+</u> 0.08	6.52	<u>+</u> 0.15	1.5	0.297
-	±0.08	5.52	<u>+</u> 0.15	2	0.371
-	<u>+</u> 0.08	4.52	<u>+</u> 0.15	2.5	0.433
10	±0.08	8	<u>+</u> 0.15	1	0.221
-	<u>+</u> 0.08	7	<u>+</u> 0.15	0.5	0.314
-	±0.08	6	<u>+</u> 0.15	2	0.394
-	<u>+</u> 0.08	5	<u>+</u> 0.15	2.5	0.462
-	±0.08	3	<u>+</u> 0.25	3.5	0.561
12	<u>+</u> 0.08	10	<u>+</u> 0.15	1	0.271
-	<u>+</u> 0.08	9	<u>+</u> 0.15	1.5	0.388
-	<u>+</u> 0.08	8	<u>+</u> 0.15	2	0.493
-	<u>+</u> 0.08	7.5	<u>+</u> 0.15	2.25	0.585
14	<u>+</u> 0.08	12	<u>+</u> 0.08	1	0.320
-	<u>+</u> 0.08	11	<u>+</u> 0.15	1.5	0.462
-	<u>+</u> 0.08	10	<u>+</u> 0.15	2	0.591
-	<u>+</u> 0.08	9	<u>+</u> 0.15	2.5	0.708
15	<u>+</u> 0.08	13	<u>+</u> 0.08	1	0.345
-	<u>+</u> 0.08	12	<u>+</u> 0.15	1.5	0.499
-	<u>+</u> 0.08	11	<u>+</u> 0.15	2	0.641
-	<u>+</u> 0.08	10	<u>+</u> 0.15	2.5	0.770
-	<u>+</u> 0.08	9	<u>+</u> 0.15	3	0.887
16	<u>+</u> 0.08	14	<u>+</u> 0.08	1	0.369
-	<u>+</u> 0.08	13	<u>+</u> 0.08	1.5	0.536
-	<u>+</u> 0.08	12	<u>+</u> 0.15	2	0.690
-	<u>+</u> 0.08	11	<u>+</u> 0.15	2.5	0.832
-	<u>+</u> 0.08	10	<u>+</u> 0.15	3	0.961
18	<u>+</u> 0.08	16	<u>+</u> 0.08	1	0.419
-	±0.08	15	<u>+</u> 0.08	1.5	0.610
-	<u>+</u> 0.08	14	<u>+</u> 0.08	2	0.789
-	±0.08	12	<u>+</u> 0.15	3	1.109
20	<u>+</u> 0.08	18	<u>+</u> 0.08	1	0.468
-	<u>+</u> 0.08	17	<u>+</u> 0.08	1.5	0.684
-	<u>+</u> 0.08	16	<u>+</u> 0.08	2	0.887

O.D	O.D LIMIT DEVIATION	I.D	I.D LIMIT DEVIATION	W.T	WEIGHT
MM	MM	MM	MM	MM	KG/MTR
20	<u>+</u> 0.08	15	<u>+</u> 0.15	2.5	1.078
-	+0.08	14	+0.15	3	1.257
22	+0.08	20	<u>+</u> 0.08	1	0.517
-	+0.08	19	+0.08	1.5	0.758
-	+0.08	18	+0.08	2	0.986
-	+0.08	17	+0.15	2.5	1.202
-	+0.08	16	+0.15	3	1.405
_	+0.08	15	+0.15	3.5	1.596
_	+0.08	14	+0.15	4	1.775
25	+0.08	22	+0.08	1.5	0.869
-	+0.08	21	+0.08	2	1.134
_	+0.08	20	+0.08	2.5	1.387
_	+0.08	18	+0.15	3.5	1.855
-	+0.08	17	+0.15	4	2.071
26	+0.08	23	+0.08	1.5	0.906
-	+0.08	22	+0.08	2	1.183
_	+0.08	19	+0.15	3.5	1.941
28	+0.08	26	+0.08	1	0.665
-	+0.08	25	+0.08	1.5	0.980
-	+0.08	24	+0.08	2	1.282
_	+0.08	23	+0.08	2.5	1.572
	+0.08	22	+0.15	3	1.849
	+0.08	20	+0.15	4	2.367
	+0.08	27	+0.08	1.5	1.054
30	+0.08	26	+0.08	2	1.380
-		25	_	2.5	1.695
-	±0.08	24	<u>+</u> 0.08 +0.15	3	1.093
-	<u>+</u> 0.08	22	_	4	2.564
-	<u>+</u> 0.08	20	<u>+</u> 0.15	5	3.082
32	<u>+</u> 0.08	26	<u>+</u> 0.15	3	
	<u>+</u> 0.15		<u>+</u> 0.15	2	2.145
35	<u>+</u> 0.15 +0.15	31	<u>+</u> 0.15 +0.15	2.5	1.627 2.003
		29	_	3	2.367
-	<u>+</u> 0.15		<u>+</u> 0.15		2.718
-	<u>+</u> 0.15 +0.15	28 27	<u>+</u> 0.15	3.5 4	3.057
- 20			<u>+</u> 0.15		
38	<u>+</u> 0.15	34	<u>+</u> 0.15	2	1.775
-	<u>+</u> 0.15	33	<u>+</u> 0.15	2.5	2.188
-	±0.15	32	±0.15	4	2.589
-	<u>+</u> 0.15	30	<u>+</u> 0.15	5	3.353
- 40	<u>+</u> 0.15	28	<u>+</u> 0.15	2	4.068
40	<u>+</u> 0.15	36	<u>+</u> 0.15		1.874
-	<u>+</u> 0.15	35	±0.15	2.5	2.311
- 42	±0.15	30	±0.15	5	4.315
42	<u>+</u> 0.20	38	<u>+</u> 0.20	2	1.972
-	<u>+</u> 0.20	36	<u>+</u> 0.20	3	2.885
-	<u>+</u> 0.20	34	<u>+</u> 0.20	4	3.748
45	<u>+</u> 0.20	40	<u>+</u> 0.20	2.5	2.620
50	<u>+</u> 0.20	45	<u>+</u> 0.20	2.5	2.928
-	<u>+</u> 0.20	40	±0.20	5	5.548
60	<u>+</u> 0.25	50	<u>+</u> 0.25	5	6.781
70	<u>+</u> 0.30	60	±0.30	5	8.014
80	<u>+</u> 0.35	70	<u>+</u> 0.35	5	9.247

Supply Conditions

Hydraulic Tubes can be supplied under conditions according to DIN 2391 Part 2 in various grades mentioned overleaf.

Fuel Injection Tubes can be supplied in lower tolerance than mentioned above. It can be supplied according to conditions mentioned in ISO-8335.

Considering the importance of outside and inside surface of tubes for fluid power industry, Mahalaxmi is providing tubes that are free from scale, rust, seams, laps. Tube can be pickled, passivated, phosphated, zincplated, oiled or varnished for rust prevention and long storage. They are stenciled at the ends and end capped.

Grade for Hydraulic Fuel Injection Tubing

		Che	Chemical Composition	omposit	ion		Chem	Chemical Composition	ition
Chemical Composition							Tensile Strength	Yield Strength	Elong. Longi.

N/SQMM
N/SQMM
Va%
%iN
%oW
%nO
Cr%
S% Max
Р% Мах
Mn%
Si% Max
С% Мах
ЭЕ
GRADE

DIN 1630

ST 37.4	0.17	0.35	>0.35	0.04	0.04	1	1	1	-	350-480	215-235	25%
ST 44.4	0.2	0.35	>0.40	0.04	0.04	-		•	•	420-550	255-275	21%
ST 52.4	0.22	0.55	<1.6	0.04	0.035					200-650	335-345	21%
					V HVS	AE ACTM 540						

1008	0.10 MAX		0.3-0.5	0.04	0.05		ı		310 MIN	205 MIN	30%
1010	0.08-0.13	-	0.30-0.60	0.04	0.05	-	-				

ASTM SA 106 Gr B

106 Gr.B	0.30 MAX	0.10 MAX	0.29-1.06	0.035MAX	0.035MAX	0.40 MAX	0.4 MAX	0.15 MAX	0.4 MAX	0.08 MAX	415 MIN	240 MIN	30%
					NIG	JIN 2391							
ST 30	0.1	0.3	<0.55	0.025	0.025					1			
ST 35	0.17	0.35	>0.40	0.025	0.025	•		1		-			
ST 45	0.21	0.35	>0.40	0.025	0.025								

MECHANICAL PROPERTIES FOR DIN 2391

0.025

0.025

<1.6

0.55

0.22

ST 52

		COLD FIN	COLD FINISH (HARD)	COLD FIN	COLD FINISH (SOFT)	COLD FINISH & STRESS RELIEVED	RESS RELIEVED	ANNEALED	ALED	NOMLIZED	ZED
		B)	(BK)	(B	(BKW)	(BKS)	(S)	(GBK)	K)	(NBK)	K)
Application:		Tensile	Elongation	Tensile	Elongation	Tensile	Elongation	Tensile	Elongation	Tensile	Elongation
 Fuel Injection and Oil Pipes Break, 		Strength		Strength		Strength		Strength		Strength	
Clutch and Fuel Tubes		N/mm2	%	N/mm2	%	N/mm2	%	N/mm2	%	N/mm2	%
• Eshricated Steel Dine Oil Dine	GRADE	Z	ΝΨ	ZIZ	N	Z	ZIZ	ZΙΣ	NIM	Z	Z
Assemblies and Allied Products	ST 30	430	80	380	12	380	16	280	30	290-420	30
	ST 35	480	9	420	10	420	14	315	25	340-470	25
 Pipe Lines for Hydraulic Powerpack 	ST 45	580	5	520	80	520	12	390	21	440-570	21
 Pipe Lines for Hydraulic/Pneumatic 	ST 52	640	4	580	7	580	10	490	22	490-630	22